Add like
Add dislike
Add to saved papers

Sodium Tetraborate Decahydrate Treatment Reduces Hydrogen Sulfide and the Sulfate-Reducing Bacteria Population of Swine Manure.

Emission of odorous and toxic gases from stored livestock manure is well documented and poses a serious health risk to farmers and livestock. Hydrogen sulfide emissions have been sharply rising with increasingly intensive livestock production and are of particular concern because of the acute toxicity of this gas. Numerous strategies, technologies, and chemical treatments have been used to control hydrogen sulfide emissions, but none have worked particularly well because they are neither cost-effective nor environmentally sustainable, or they are too toxic for animals. The inhibitory effect of the sodium tetraborate decahydrate (i.e., borax) treatment to reduce hydrogen sulfide production using sulfate-reducing bacteria was examined in shallow manure pits in a starter-grower swine facility. Monitoring of air emissions and DNA analysis revealed that treatment of stored swine manure effectively reduced hydrogen sulfide production, and the reduction correlated to a decrease in the sulfate-reducing bacteria population in the stored swine manure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app