Add like
Add dislike
Add to saved papers

Cocaine Withdrawal Reduces Gamma-Aminobutyric Acid-Ergic Transmission and Gephyrin Expression at Medial Prefrontal Cortex in Cocaine-Conditioned Place-Preference Rats, Which Shows Increased Cocaine Seeking.

AIMS: Chronic cocaine abuse decreases the inhibitory synaptic transmission via unknown mechanisms, while pharmacologically augmenting gamma-aminobutyric acid-ergic (GABAergic) transmission attenuates cocaine craving. Here, we propose that prolonged cocaine withdrawal downregulates GABAergic transmission and its important regulator gephyrin in medial prefrontal cortex (mPFC), in cocaine-conditioned place-preference (CPP) rats.

METHODS: CPP test, patch clamp, and Western blot analysis are engaged to test this proposal.

RESULTS: Two-week cocaine withdrawal further increased CPP score, as compared to the 24-hour withdrawn group. The amplitude of GABAergic inhibitory postsynaptic currents (IPSCs) was decreased in 2-week-withdrawn mPFC neurons from cocaine-CPP rats, compared to that of saline-CPP rats. Two-week withdrawal did not alter the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) in mPFC in cocaine-CPP rats. Two-week withdrawal increased the ratio of EPSCs/IPSCs (E/I) in the same mPFC neuron in cocaine-CPP rats. In addition, Western blots showed 2-week cocaine-withdrawn down-regulated gephyrin at postsynaptic density (PSD) sites of mPFC.

CONCLUSION: We found decreased GABAergic IPSCs and downregulated gephyrin in PSD at mPFC in 2-week cocaine-withdrawn rats that showed increased CPP, suggesting that an increased E/I ratio and neuron excitability in mPFC may associate with a cocaine-seeking tendency. Strategies aimed at GABAergic synapses in mPFC may therapeutically benefit to cocaine addiction treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app