JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle.

NMR in Biomedicine 2017 January
Creatine, a key component of muscle energy metabolism, exhibits a chemical exchange saturation transfer (CEST) effect between its amine group and bulk water, which has been exploited to spatially and temporally map creatine changes in skeletal muscle before and after exercise. In addition, exercise leads to an increase in muscle perfusion. In this work, we determined the effects of perfused blood on the CEST effects from creatine in skeletal muscle. Experiments were performed on healthy human subjects (n = 5) on a whole-body Siemens 7T magnetic resonance imaging (MRI) scanner with a 28-channel radiofrequency (RF) coil. Reactive hyperemia, induced by inflation and subsequent deflation of a pressure cuff secured around the thigh, was used to increase tissue perfusion whilst maintaining the levels of creatine kinase metabolites. CEST, arterial spin labeling (ASL) and 31 P MRS data were acquired at baseline and for 6 min after cuff deflation. Reactive hyperemia resulted in substantial increases in perfusion in human skeletal muscle of the lower leg as measured by the ASL mean percentage difference. However, no significant changes in CrCEST asymmetry (CrCESTasym ) or 31 P MRS-derived PCr levels of skeletal muscle were observed following cuff deflation. This work demonstrates that perfusion changes do not have a major confounding effect on CrCEST measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app