Add like
Add dislike
Add to saved papers

Spectroscopic, Structural, and Kinetic Investigation of the Ultrafast Spin Crossover in an Unusual Cobalt(II) Semiquinonate Radical Complex.

A comprehensive spectroscopic and structural investigation of [CoII (l-N4  tBu2 )(dbsq)][B(p-C6 H4 Cl)4 ] (1, l-N4  tBu2 =N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane, dbsq1- =3,5-di-tert-butylsemiquinonate), the first known octahedral complex with a low-spin (ls) CoII semiquinonate ground state, is reported. Above 200 K, solids as well as solutions of 1 exhibit thermally induced spin-crossover (SCO) from the ls to the high-spin (hs) CoII semiquinonate state instead of the frequently observed valence tautomerism from ls CoIII catecholate to hs CoII semiquinonate. DFT calculations demonstrate that the (closed shell) CoIII catecholate suffers from a triplet instability leading to the ls CoII semiquinonate ground state. The thorough temperature-dependent spectroscopic study of the SCO enables a photophysical investigation. Thus, by selective photoexcitation of the ls fraction of 1 in solution at room temperature, ultrafast conversion to the hs state is observed using femtosecond electronic and IR-vibrational (infrared) transient absorption spectroscopy. The kinetics of the photocycle is described by a stretched exponential with τ=3.3-3.6 ps and β=0.52-0.54, representing an upper limit for the hs-ls relaxation time. This is, to our knowledge, the fastest interconversion ever determined for a SCO complex, and is attributed to the special situation that in 1 a CoII complex is coordinated to a π-radical ligand allowing very efficient coupling between the ls and hs spin states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app