JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Calmodulin interacts with Rab3D and modulates osteoclastic bone resorption.

Scientific Reports 2016 November 30
Calmodulin is a highly versatile protein that regulates intracellular calcium homeostasis and is involved in a variety of cellular functions including cardiac excitability, synaptic plasticity and signaling transduction. During osteoclastic bone resorption, calmodulin has been reported to concentrate at the ruffled border membrane of osteoclasts where it is thought to modulate bone resorption activity in response to calcium. Here we report an interaction between calmodulin and Rab3D, a small exocytic GTPase and established regulator osteoclastic bone resorption. Using yeast two-hybrid screening together with a series of protein-protein interaction studies, we show that calmodulin interacts with Rab3D in a calcium dependent manner. Consistently, expression of a calcium insensitive form of calmodulin (i.e. CaM1234) perturbs calmodulin-Rab3D interaction as monitored by bioluminescence resonance energy transfer (BRET) assays. In osteoclasts, calmodulin and Rab3D are constitutively co-expressed during RANKL-induced osteoclast differentiation, co-occupy plasma membrane fractions by differential gradient sedimentation assay and colocalise in the ruffled border as revealed by confocal microscopy. Further, functional blockade of calmodulin-Rab3D interaction by calmidazolium chloride coincides with an attenuation of osteoclastic bone resorption. Our data imply that calmodulin- Rab3D interaction is required for efficient bone resorption by osteoclasts in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app