Add like
Add dislike
Add to saved papers

A predictive model of the tensile strength of twisted carbon nanotube yarns.

Nanotechnology 2017 January 7
Due to the outstanding mechanical properties of individual carbon nanotubes (CNTs) at the nanoscale, CNT yarns are expected to demonstrate high strength at the macroscale. In this study, a predictable model was developed to predict the tensile strength of twisted CNT yarns. First, the failure mechanism of twisted CNT yarns was investigated using in situ tensile tests and ex situ observations. It was revealed that CNT bundles, which are groups of CNTs that are tightly bound together, formed during tensile loading, leaving some voids around the bundles. Failure of the CNT yarns occurred as the CNT bundles were pulled out of the yarns. Two stresses that determined the tensile strength of the CNT yarns were identified: interfacial shear and frictional stresses originating from van der Waals interactions, and the lateral pressure generated by the twisted yarn structure. Molecular dynamics and yarn mechanics were used to calculate these two stresses. Finally, the tensile strength of CNT yarns was predicted and compared with experimental data, showing reasonable agreement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app