Add like
Add dislike
Add to saved papers

MUSE: A MULTI-LOCUS SAMPLING-BASED EPISTASIS ALGORITHM FOR QUANTITATIVE GENETIC TRAIT PREDICTION.

Quantitative genetic trait prediction based on high-density genotyping arrays plays an important role for plant and animal breeding, as well as genetic epidemiology such as complex diseases. The prediction can be very helpful to develop breeding strategies and is crucial to translate the findings in genetics to precision medicine. Epistasis, the phenomena where the SNPs interact with each other, has been studied extensively in Genome Wide Association Studies (GWAS) but received relatively less attention for quantitative genetic trait prediction. As the number of possible interactions is generally extremely large, even pairwise interactions is very challenging. To our knowledge, there is no solid solution yet to utilize epistasis to improve genetic trait prediction. In this work, we studied the multi-locus epistasis problem where the interactions with more than two SNPs are considered. We developed an effcient algorithm MUSE to improve the genetic trait prediction with the help of multi-locus epistasis. MUSE is sampling-based and we proposed a few different sampling strategies. Our experiments on real data showed that MUSE is not only effcient but also effective to improve the genetic trait prediction. MUSE also achieved very significant improvements on a real plant data set as well as a real human data set.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app