Add like
Add dislike
Add to saved papers

Molecular Similarity Concepts for Informatics Applications.

The assessment of small molecule similarity is a central task in chemoinformatics and medicinal chemistry. A variety of molecular representations and metrics are applied to computationally evaluate and quantify molecular similarity. A critically important aspect of molecular similarity analysis in chemoinformatics and pharmaceutical research is that one is typically not interested in quantifying the degree of structural or chemical similarity between compounds per se, but rather in extrapolating from molecular similarity to property similarity. In other words, one assumes that there is a correlation between calculated similarity and specific properties of small molecules including, first and foremost, biological activities. Although similarity is a priori a subjective concept, and difficult to quantify, it must computationally be assessed in a formally consistent manner. Otherwise, there is little utility of similarity calculations. Consistent treatment requires approximations to be made and the consideration of alternative computational similarity concepts, as discussed herein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app