Add like
Add dislike
Add to saved papers

A novel signaling role for miR-451 in esophageal tumor microenvironment and its contribution to tumor progression.

OBJECTIVE: We evaluated miR-451 expression in serum and tissue samples of esophageal squamous cell carcinoma (ESCC) patients. Then, we examined a secretory role of miR-451 in esophageal tumor microenvironment.

METHODS: miR-451 expression was evaluated in 39 serum samples from esophageal SCC patients compared to 39 normal individuals as well as 26 pairs of fresh-frozen tumor and adjacent normal tissues from patients with ESCC, using qRT-PCR. In a co-culture system of human normal fibroblasts (HFSF-PI3) and esophageal cancer cell line (KYSE-30), we evaluated exosomal miR-451 secretion into the conditioned medium (CM) of both cell lines. Then, we analyzed the effect of primiR-451-transfected fibroblasts on the migration potency of their neighboring KYSE-30 cells.

RESULTS: We detected miR-451 over-expression in serum samples of esophageal cancer patients compared to the normal group (P = 0.005). Interestingly, fresh-frozen tumor tissues from the same patients showed miR-451 down-regulation compared to their adjacent normal counterparts (P = 0.043). Co-culturing the KYSE-30 cell line with normal fibroblasts significantly induced miR-451 exosomal secretion into the CM. Moreover, co-culture of KYSE-30 cell line with miR-451-over-expressing fibroblasts significantly induced migration tendency in KYSE-30 cell line compared to the mock-transfected fibroblasts (P < 0.0001). In this system, MIF expression (a validated target of miR-451) in the KYSE-30 cell line was increased although this alteration was not statistically significant (fold change = 4.44).

CONCLUSIONS: Our data suggest that cancer-associated fibroblasts use exosomal miR-451 as a signaling molecule to provide a favorable niche for tumor cell migration and cancer progression. Our findings provide new insights into the stromal role of miR-451 in the esophageal tumor microenvironment as a communicatory molecule and suggest a signaling role for miR-451 in extracellular matrix cross-talks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app