Add like
Add dislike
Add to saved papers

Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice.

Frontiers of Medicine 2016 December
The tumor suppressor gene liver kinase B1 (LKB1), also called STK11, encodes a serine/threonine kinase. LKB1 plays crucial roles in cell differentiation, proliferation, and polarity. In this study, LKB1 conditional knockout mice (LKB1Pax2 CKO mice) were generated using Pax2-Cre mice to investigate the function of LKB1 in inner ear hair cells during early embryonic period. LKB1Pax2 CKO mice died perinatally. Immunofluorescence and scanning electron microscopy revealed that stereociliary bundles in LKB1Pax2 CKO mice were clustered and misoriented, respectively. Moreover, ectopic distribution of kinocilium bundles resulting from abnormal migration of kinocilium was observed in the mutant mice. The orientation of stereociliary bundles and the migration of kinocilia are critical indicators of planar cell polarity (PCP) of hair cells. LKB1 deficiency in LKB1Pax2 CKO mice thus disrupted hair cell planar polarity during embryonic development. Our results suggest that LKB1 is required in PCP formation in cochlear hair cells in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app