Add like
Add dislike
Add to saved papers

Insulin elevates leptin secretion and mRNA levels via cyclic AMP in 3T3-L1 adipocytes deprived of glucose.

Heliyon 2016 November
AIMS: Leptin plays an important role in the pathogenesis of obesity and diabetes, yet the regulatory mechanisms of this hormone have not been fully elucidated. In this study, we aimed to clarify the roles of insulin and glucose in leptin secretion and mRNA production using inhibitors of insulin signal transduction in adipocytes cultured under glucose-free or normal conditions.

METHODS: Differentiated 3T3-L1 adipocytes were stimulated with insulin in combination with inhibitors for phosphoinositide 3-kinase (PI3K), Akt, and phosphodiesterase 3B (PDE3B), as well as epinephrine and a cyclic AMP (cAMP) analog under glucose-free or normal conditions. After 8 h of stimulation, leptin protein levels in the media and leptin mRNA expression levels in the adipocytes were measured.

RESULTS: Insulin significantly increased the secretion and mRNA levels of leptin under the depletion of glucose. Glucose augmented basal leptin secretion without insulin, while glucose nullified insulin-induced leptin mRNA upregulation. The PI3K inhibitor BEZ-235, the Akt inhibitor MK-2206, and the PDE3B inhibitor cilostazol attenuated the insulin stimulation of leptin secretion, but did not suppress the insulin-induced leptin mRNA upregulation with glucose depletion. In contrast to the glucose-free condition, insulin failed to upregulate leptin mRNA in the presence of glucose. The cAMP analog dibutyryl cAMP and epinephrine decreased both leptin secretion and mRNA regardless of glucose supplementation.

CONCLUSION: Insulin alone stimulates leptin secretion and elevates leptin mRNA levels via cAMP under the lack of glucose metabolism, while glucose is a significant and ambivalent effector on the insulin effects of leptin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app