Add like
Add dislike
Add to saved papers

Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via up-regulation of insulin-like growth factor 2.

Oncotarget 2016 December 28
Pancreatic cancer is one of the most deadly cancers with a poor prognosis. Although microRNAs are involving in the carcinogenesis and development of pancreatic cancer, little information is known regarding the role of miR-663b in pancreatic cancer. In this study, the expression of miR-663b in pancreatic cancer cells was down-regulated by hypermethylation in its putative promoter region, and overexpression of miR-663b repressed cell proliferation, invasion and migration, and induced apoptosis in pancreatic cancer cells. Bioinformatics analysis, luciferase report assay and rescue experiments showed that insulin-like growth factor 2 (IGF2) was a direct target of miR-663b. Results from clinical samples showed that the expression level of miR-663b correlated with the pathological grading, and the expression of miR-663b was down-regulated and was inversely correlated with IGF2 expression level in pancreatic cancer tissues. More importantly, the long non-coding RNA, HOX transcript antisense RNA (HOTAIR), was up-regulated in both pancreatic cancer cells and tissues, and HOTAIR suppressed the expression of miR-663b in pancreatic cancer by histone modification on H3K4me3 and H3K27me3 on miR-663b promoter. Further in vivo studies demonstrated that the stable overexpression of miR-663b or knock-down of HOTAIR inhibited tumor growth and was associated with IGF2 expression. In summary, our studies demonstrated that miR-663b is epigenetically repressed by HOTAIR and exerts its tumor-suppressive function via targeting IGF2 in pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app