Add like
Add dislike
Add to saved papers

Nitric oxide modulates the immunological response of bovine PBMCs in an in vitro BRDc infection model.

Bovine respiratory disease complex (BRDc) is a multi-factorial disease, involving both viral and bacterial pathogens, that negatively impacts the cattle feedlot industry. A nitric oxide releasing solution (NORS) has been developed and shown to have potential in the prevention of BRDc. This study investigated the underlying immunological mechanisms through which the nitroslyating agent NORS provides protection against the development of BRDc in susceptible cattle. An in vitro BRDc experimental model was designed using bovine peripheral blood mononuclear cells (PBMCs) which were infected with bovine herpesvirus 1 (BHV-1) and subsequently cultured with lipopolysaccharides (LPS) extracted from Mannheimia haemolytica bacteria. The cells were treated with NORS following viral infection to reflect the timing of administering the NORS treatment in feedlots during initial processing. An expression and protein analysis of key genes involved in the innate immune response was carried out. The BRDc model produced significant increases in gene expression (p<0.01) and protein release (p<0.05) of the proinflammatory cytokines IL-1β and TNF. Treatment with NORS reduced the protein levels of IL-1β (0.39-fold↓) (p<0.05) and TNF (0.48-fold↓) (p<0.01) in the BRDc experimental group when compared against the non-treatment BRDc controls. TLR4 expression, having been significantly reduced under the BRDc experimental conditions (0.33-fold↓) (p<0.05), increased significantly (0.76-fold↑) (p<0.05) following NORS treatment. This study provides evidence suggesting that NO may protect against the development of BRDc by limiting deleterious inflammation while simultaneously increasing TLR4 expression and enhancing the ability of the host to detect and respond to bacterial pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app