Add like
Add dislike
Add to saved papers

Defining Low-Dimensional Projections to Guide Protein Conformational Sampling.

Exploring the conformational space of proteins is critical to characterize their functions. Numerous methods have been proposed to sample a protein's conformational space, including techniques developed in the field of robotics and known as sampling-based motion-planning algorithms (or sampling-based planners). However, these algorithms suffer from the curse of dimensionality when applied to large proteins. Many sampling-based planners attempt to mitigate this issue by keeping track of sampling density to guide conformational sampling toward unexplored regions of the conformational space. This is often done using low-dimensional projections as an indirect way to reduce the dimensionality of the exploration problem. However, how to choose an appropriate projection and how much it influences the planner's performance are still poorly understood issues. In this article, we introduce two methodologies defining low-dimensional projections that can be used by sampling-based planners for protein conformational sampling. The first method leverages information about a protein's flexibility to construct projections that can efficiently guide conformational sampling, when expert knowledge is available. The second method builds similar projections automatically, without expert intervention. We evaluate the projections produced by both methodologies on two conformational search problems involving three middle-size proteins. Our experiments demonstrate that (i) defining projections based on expert knowledge can benefit conformational sampling and (ii) automatically constructing such projections is a reasonable alternative.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app