Add like
Add dislike
Add to saved papers

Enterococcus faecium HDRsEf1 Protects the Intestinal Epithelium and Attenuates ETEC-Induced IL-8 Secretion in Enterocytes.

The probiotic Enterococcus faecium HDRsEf1 (Ef1) has been shown to have positive effects on piglet diarrhoea, but the mechanism has not yet been elucidated. In this study, using the IPEC-J2 cell line to mimic intestinal epithelial cells and enterotoxigenic Escherichia coli (ETEC) K88ac as a representative intestinal pathogen, the mechanism underlying Ef1 protection against an enteropathogen was investigated. The results demonstrated that Ef1 was effective in displacing K88ac from the IPEC-J2 cell layer. Moreover, Ef1 and its cell-free supernatant (S-Ef1) modulate IL-8 released by IPEC-J2 cells. Ef1 and its cell-free supernatant showed the potential to protect enterocytes from an acute inflammatory response. In addition, Ef1 and its cell-free supernatant increased the transepithelial electrical resistance (TEER) of the enterocyte monolayer, thus strengthening the intestinal barrier against ETEC. These results may contribute to the development of therapeutic interventions using Ef1 in intestinal disorders of piglets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app