Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The expression of chemorepulsive guidance receptors and the regenerative abilities of spinal-projecting neurons after spinal cord injury.

Neuroscience 2017 January 27
Spinal cord injury (SCI) in mammals leads to permanent loss of function because axons do not regenerate in the central nervous system (CNS). To date, treatments based on neutralizing inhibitory environmental cues, such as the myelin-associated growth inhibitors and chondroitin sulfate proteoglycans, or on adding neurotrophic factors, have had limited success in enhancing regeneration. Published studies suggested that multiple axon guidance cues (repulsive guidance molecule (RGM) family, semaphorins, ephrins, and netrins) persist in adult animals, and that their expression is upregulated after CNS injury. Moreover, many adult CNS neurons continue to express axon guidance receptors. We used the advantages of the lamprey CNS to test the hypotheses that the regenerative abilities of spinal-projecting neurons depend upon their expression of chemorepulsive guidance receptors. After complete spinal transection, lampreys recover behaviorally, and injured axons grow selectively in their correct paths. However, the large identified reticulospinal (RS) neurons in the lamprey brain are heterogeneous in their regenerative abilities - some are high regeneration capacity neurons (probability of axon regeneration >50%), others are low regeneration capacity neurons (<30%). Here we report that the RGM receptor Neogenin is expressed preferentially in the low regeneration capacity RS neurons that regenerate poorly, and that downregulation of Neogenin by morpholino antisense oligonucleotides enhances regeneration of RS axons after SCI. Moreover, lamprey CNS neurons co-express multiple guidance receptors (Neogenin, UNC5 and PlexinA), suggesting that the regenerative abilities of spinal-projecting neurons might reflect the summed influences of the chemorepulsive guidance receptors that they express.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app