Add like
Add dislike
Add to saved papers

Use of physiologically based kinetic modeling-facilitated reverse dosimetry of in vitro toxicity data for prediction of in vivo developmental toxicity of tebuconazole in rats.

Toxicology Letters 2017 January 16
Toxicological hazard and risk assessment largely rely on animal testing. For economic and ethical reasons, the development and validation of reliable alternative methods for these animal studies, such as in vitro assays, are urgently needed. In vitro concentration-response curves, however, need to be translated into in vivo dose-response curves for risk assessment purposes. In the present study, we translated in vitro concentration-response data of the antifungal compound tebuconazole, obtained in the ES-D3 cell differentiation assay, into predicted in vivo dose-response data for developmental toxicity using physiologically based kinetic (PBK) modeling-facilitated reverse dosimetry. Using the predicted in vivo dose-response data BMD(L)10 values for developmental toxicity in rat were calculated and compared with NOAEL values for developmental toxicity data in rats as reported in the literature. The results show that the BMDL10 value from predicted dose-response data are a reasonable approximation of the NOAEL values (ca. 3-fold difference). It is concluded that PBK modeling-facilitated reverse dosimetry of in vitro toxicity data is a promising tool to predict in vivo dose-response curves and may have the potential to define a point of departure for deriving safe exposure limits in risk assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app