Add like
Add dislike
Add to saved papers

Enhancing gilthead seabream immune status and protection against bacterial challenge by means of antigens derived from Vibrio parahaemolyticus.

In an attempt to control the proliferation of the pathogenic bacterium Vibrio parahaemolyticus in gilthead seabream (Sparus aurata), the immunostimulant effect of lysate and ToxA from this bacterium was evaluated. Fish were intraperitoneally injected twice (first injection, day 1 of the experiment; second injection, day 7) and sampled after one week (on days 8 and 15). Afterwards, all fish specimens were experimentally infected with V. parahaemolyticus and mortality was recovered for 1 week. Fish injected with lysate, ToxA and phosphate buffer saline (control) showed 100%, 50% and 0% survival, respectively, when challenged with the pathogen. Skin mucus immune parameters and immune-related gene expression in skin and spleen were also evaluated. The results showed that mucus immune parameters were enhanced in the lysate and ToxA groups compared with the values obtained for fish from the control group. Expression of IL-1β, TNF-α, C3 and IgM genes was significantly up-regulated in the lysate and ToxA groups, principally after infection with the bacterium. Interestingly, TLR5 gene expression increased in fish immunized with lysate. The most prominent histological characteristic in gut from infected fish was the presence of a great number of intraepithelial leucocytes as well as inflammation of the submucosa, while severe hydropic degeneration and hemosiderosis were detected in liver from infected fish. Injection of lysate or ToxA had a protective effect against the deleterious consequences of subsequent infection with V. parahaemolyticus in gut and liver. The findings underline the potential of lysate and ToxA as potent preventive antigens against this kind of vibriosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app