Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification, eukaryotic expression and structure & function characterizations of β-defensin like homologues from Pelodiscus sinensis.

Defensins are a group of host defense peptides that play a central role in host innate immune responses. Here, 26 genes encoding β-defensin-like peptides have been identified for the first time in Pelodiscus sinensis using database mining approach. Phylogenetic study confirmed that β-defensins are fast evolving genes with high rates of sequence substitutions. The expression level of several selected genes in different tissues was examined by RT-PCR. Ps-BDs mainly adopt β-strands and/or α-helix conformations homology modeled by Rosetta program. Further, Ps-BD2 was expressed in Pichia pastoris and purified using Ni-NTA column and RT-HPLC. As expected, the rPs-BD2 showed strong antimicrobial activity, but displayed a negligible hemolytic and cytotoxic activity on human erythrocytes and Raw 264.7 murine macrophage cells, respectively. Our results suggested that the Ps-BD2 was produced efficiently in P. pastoris expression system, which makes the large-scale use of rPs-BDs possible in the future clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app