Add like
Add dislike
Add to saved papers

An ecophysiological background for biogeographic patterns of two island lizards?

Distributions of sedentary ectotherms are dependent on temperature and humidity due to their low homeostatic and dispersal abilities. Lizards are strongly conditioned by temperature, but hydric environment may be also important, at least in arid environments. Biotic interactions may also play a role in range patterns, but they are of minor importance in islands where native species monopolize well-delimited niche spaces. On the arid island of São Vicente (Cabo Verde), two endemic lizards display different spatial patterns. While the gecko Tarentola substituta is widely distributed across the island, the skink Chioninia stangeri is restricted to the NE, which is cooler, more humid, and vegetated. We hypothesized that this is due to differences in the fundamental niche, specifically in ecophysiology. We predict that C. stangeri should select for lower temperatures and lose more water by evaporation than T. substituta. We submitted adults of each species to standard experiments to assess preferred body temperatures (Tp) and evaporative water loss (EWL) rates, and examined the variation between species and through time using repeated-measures AN(C)OVAs. Results only partially supported our expectations. Contrary to the prediction, skinks attained higher Tp than geckos but in the long term showed a trend for higher EWL as predicted. Thus, while ecophysiology certainly contributes to functional interpretation of species distributions, it needs to be combined with other evidence such as habitat use and evolutionary history. These findings will be useful to perform mechanistic models to better understand the impact of climate change and habitat disturbance on these endemic species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app