Add like
Add dislike
Add to saved papers

Synthesis, biological evaluation and in silico molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors.

In efforts to develop lead anti-TB compounds, a novel series of 19 pyrrolyl benzohydrazides were synthesized and screened to target enoyl-ACP reductase enzyme, which is one of the important enzymes involved in type II fatty acid biosynthetic pathway of M. tuberculosis. Pharmacophores were constructed using GALAHAD to generate alignment of data sets and calculated by Pareto ranking. The pharmacophore features were then filtered by Surflex-dock study using enoyl ACP reductase from M. tuberculosis. Compounds 5b and 5d showed H-bonding interactions with Tyr158, Thr196 and co-factor NAD+ that fitted well within the binding pocket of InhA. All the synthesized compounds were screened for preliminary antibacterial activities against Gram-positive S. aureus and Gram-negative E. coli and M. tuberculosis H37 Rv to evaluate their antitubercular activities. Some representative compounds were further tested for mammalian cell toxicity using human lung cancer cell-line (A549) that was found to be nontoxic. These compounds exhibited moderate inhibition activities against InhA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app