Add like
Add dislike
Add to saved papers

MicroRNA let-7g inhibited hypoxia-induced proliferation of PASMCs via G0/G1 cell cycle arrest by targeting c-myc.

Life Sciences 2017 Februrary 2
AIMS: Pulmonary hypertension (PH) is a proliferative disorder characterized by enhanced proliferation and suppressed apoptosis of intrapulmonary vascular smooth muscle cells. Recently, network-based bioinformatics have identified let-7 family, a tumor suppressive microRNA, regulate multiple interacting targets relevant to PH. However, the role of let-7 in vascular homeostasis in PH remains unknown. Thus, we wanted to investigate the role of let-7 in hypoxia-induced PASMCs proliferation and the underlying mechanism in hypoxic pulmonary hypertension (HPH).

MAIN METHODS: The male Sprague-Dawley (SD) rats were exposed to hypoxia (10% O2) for 21days to induce HPH. The expression of let-7 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Primary rat PASMCs were exposed to hypoxia (3% O2). MTS and EDU were performed to evaluate PASMCs proliferation. The mRNA and protein expression of c-myc, Bmi-1 and p16 were determined by qRT-PCR and Western blotting, respectively. The functions of let-7g on PASMCs proliferation, c-myc, Bmi-1 and p16 expression were assessed by let-7g mimic and inhibitor transfection.

KEY FINDINGS: Among let-7 family members, only let-7b and let-7g were significantly down-regulated in remodeled pulmonary artery in HPH rats. Furthermore, only let-7g level was decreased in hypoxic PASMCs. Either hypoxia or let-7g inhibitor stimulated proliferation of PASMCs, let-7g mimic inhibited hypoxia-induced PASMCs proliferation. C-myc was the target of let-7g in PASMCs. Transfect of let-7g mimic inhibited hypoxia-induced c-myc, Bmi-1 up-regulation and p16 down-regulation, which ultimately controls cell cycle progression.

SIGNIFICANCE: Loss of inhibition on c-myc-Bmi-1-p16 signaling pathway by let-7g may lead to PASMCs proliferation and vascular remodeling in HPH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app