JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structure-activity relationship study of a small cyclic peptide H-c[Lys-Pro-Glu]-Arg-OH: a potent inhibitor of Vascular Endothelial Growth Factor interaction with Neuropilin-1.

Inhibition of angiogenesis is one of the most promising approaches in anticancer therapy. It was recently suggested that Neuropilin-1 (NRP-1) in tumour cells may serve as a separate receptor for Vascular Endothelial Growth Factor-165 (VEGF165 ) which is one of the main pro-angiogenic agents in the organism. Therefore molecules inhibiting VEGF165 binding to NRP-1 could be potential candidates for new antiangiogenic and anticancer drugs. Here we present a structure-activity relationship study of the peptide H-c[Lys-Pro-Glu]-Arg-OH which showed high inhibitory effect on VEGF165 /NRP-1 binding (IC50 =0.18μM) in our previous study. We report the design, synthesis, in vitro assays and docking analysis of four small cyclic peptides (14-,15-membered ring) and one bigger cyclic compound (30-membered ring). Our study shows that both the ring size and configuration of amino acid residues present in the structure are crucial for high inhibitory effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app