Add like
Add dislike
Add to saved papers

Numerical study of non-Fourier heat conduction in a biolayer spherical living tissue during hyperthermia.

Laser interstitial thermal therapy is one of the best methods for tumor treatment. Quality of treatment is highly influenced by the way of temperature control that depends strongly upon the living tissue thermal properties. One-dimensional dual-phase-lag (DPL) in spherical coordinate system numerically has been investigated for bioheat transfer during laser treatment in living biological tissues, which contain tumoral and normal layers. Various behaviors of heat transfer models such as wave, wavelike and diffusion are studied by adjusting the relaxation parameters. Effect of different phase lags values of the heat flux and the temperature gradient and thermal diffusivity on the behavior of heat transfer overshooting phenomenon is also investigated as well. Results indicate variation of the time lag and the thermal diffusivity of the normal and tumoral tissues. Also it has cleared that the geometrical conditions have significant effects upon the thermal response and overshooting phenomenon in biological tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app