Add like
Add dislike
Add to saved papers

Automatic identification of gait events during walking on uneven surfaces.

Gait & Posture 2016 November 19
The accurate detection of gait events is essential for clinical gait analysis. Aside from speed, surface characteristics like planarity and compliance can affect gait kinematics. Therefore detection of kinematic gait events on uneven surfaces may be inaccurate. To date, no study has investigated the possible influence of surface characteristics on gait event detection. Thus, the purpose of this study was to assess and compare the performance of four kinematic-based gait event detection algorithms (horizontal heel-heel displacement, foot velocity, heel/toe-PSIS displacement, peak hip extension) during walking on three surfaces with different degrees of planarity. Kinematic and force plate data were collected on thirteen athletes during two self-selected walking speeds at a normal (1.30±0.03m/s) and fast pace (1.70±0.10m/s). Footstrike and toe-off events were calculated by the algorithms and compared to vertical ground reaction force as a reference. The main findings of the study were: (1) surface configuration had an effect on algorithm accuracy (p<0.010, 0.84

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app