Add like
Add dislike
Add to saved papers

Effects of Administered Ethanol and Methamphetamine on Glial Glutamate Transporters in Rat Striatum and Hippocampus.

Exposure to ethanol (EtOH) or methamphetamine (MA) can lead to increase in extracellular glutamate concentration in the brain. Although studies from ours showed the effects of EtOH exposure on key glial glutamate transporters, little is known about the effects of sequential exposure to EtOH and MA or MA alone on certain glial glutamate transporters. In this study, we investigated the effects of sequential exposure to EtOH and MA on the expression of the major glutamate transporters, glutamate transporter 1 (GLT-1), as well as cystine/glutamate antiporter (xCT) and glutamate aspartate transporter (GLAST) in striatum and hippocampus. We also tested the effects of ceftriaxone (CEF), known to upregulate GLT-1, in animals administered EtOH and MA. Wistar rats were orally gavaged with EtOH (6 g/kg) or water for 7 days. On the following day (day 8), the rats received four intraperitoneal (i.p.) injections of MA (10 mg/kg) or saline (vehicle) occurring every 2 h. The rats were then treated with CEF (200 mg/kg/day, i.p.) or saline on days 8, 9, and 10. EtOH or MA exposure caused a significant downregulation of GLT-1 expression as compared to control groups in striatum and hippocampus. Furthermore, sequential exposure of EtOH and MA caused a significant downregulation of GLT-1 expression as compared to either drug administered alone in both brain regions. Importantly, GLT-1 expression was restored following CEF treatment. There were no significant differences on xCT and GLAST expression in striatum and hippocampus between all groups. These findings demonstrated that sequential exposure to EtOH and MA has additive effect in downregulation of GLT-1 and this effect can be attenuated by CEF treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app