Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of Barhl2 and its relationship with Pax6 expression in the forebrain of the mouse embryo.

BMC Neuroscience 2016 November 26
BACKGROUND: The transcription factor Barhl2 is an antiproneural transcription factor with roles in neuronal differentiation. The functions of its homologue in Drosophila development are better understood than its functions in mammalian brain development. Existing evidence suggests that its expression in the embryonic forebrain of the mouse is regional and may complement that of another transcription factor that is important for forebrain development, Pax6. The aim of this study is to provide a more detailed description of the Barhl2 expression pattern in the embryonic forebrain than is currently available, to relate its expression domains to those of Pax6 and to examine the effects of Pax6 loss on Barhl2 expression.

RESULTS: We found that Barhl2 is expressed in the developing diencephalon from the time of anterior neural tube closure. Its expression initially overlaps that of Pax6 in a central region of the alar diencephalon but over the following days their domains of expression become complementary in most forebrain regions. The exceptions are the thalamus and pretectum, where countergradients of Pax6 and Barhl2 expression are established by embryonic day 12.5, before overall Pax6 levels in these regions decline greatly while Barhl2 levels remain relatively high. We found that Barhl2 expression becomes upregulated in specifically the thalamus and pretectum in Pax6-null mice.

CONCLUSIONS: The region-specific expression pattern of Barhl2 makes it likely to be an important player in the development of region-specific differences in embryonic mouse forebrain. Repression of its expression in the thalamus and pretectum by Pax6 may be crucial for allowing proneural factors to promote normal neuronal differentiation in this region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app