Add like
Add dislike
Add to saved papers

Impact of transgene genome location on gene migration from herbicide-resistant wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host).

BACKGROUND: Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat.

RESULTS: BC1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively.

CONCLUSION: The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app