Add like
Add dislike
Add to saved papers

Simulating the dynamics of lipid droplets in adipocyte differentiation.

BACKGROUND: Lipid droplets are cellular organelles that regulate the storage and hydrolysis of neutral lipids. The dynamic of lipid droplets (LDs), during the differentiation process from fibroblast-like cells into adipocyte, is strictly related to the lipid storage in cells. The number and size of the LDs depends on the lipidic or lipolytic stimulations to which the cells are exposed.

METHOD: Here, we propose a computational approach to study the processes regulating the LDs' number and growth/reduction in size using Monte Carlo simulations. The number and size of LDs are measured before and after experimental treatment in 3T3-L1 cell cultures. The algorithms simulating the evolution from basal to differentiate (lipidic or lipolytic) conditions are here detailed step by step. The algorithms can mimic thousand interacting events between LDs or squeezing/enlargement events of a single LD in a very brief computational time, from seconds up to few minutes.

RESULTS: The main processes regulating the interactions between LDs are here presented, and for each of them, all the needed information to re-write the computational routine are provided. More specifically, the results obtained, analyzing the fusion process between LDs, are here presented.

CONCLUSIONS: Here, we would like to supply the basis to explore the dynamics of lipid storage in cells with a computational approach and to encourage the applications of numerical simulation to cell studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app