Add like
Add dislike
Add to saved papers

Proposed binding mechanism of galbanic acid extracted from Ferula assa-foetida to DNA.

Recently, galbanic acid (GA), a sesquiterpenoid coumarin, has been introduced as an apoptotic and geno/cytotoxicity agent. In the present study, GA has been extracted from Ferula assa-foetida, a native medicinal plant in Iran, and characterized by (1)H NMR, mass spectroscopy. Additionally, spectroscopic studies have been performed in order to investigate its DNA-interaction mode. The electrochemical behavior of GA has been studied by cyclic voltammetry (CV) in various scan rates. In neutral media (pH=7.3) one irreversible cathodic peak was obtained at -1.46 V, while in higher scan rates an irreversible one was determined at -1.67 V. According to the voltametric data GA can be easily reduced by 2e(-)/2H(+) mechanism at hanging mercury drop electrode (HMDE). The interaction of GA with ct-DNA was evaluated by CV, differential pulse voltammetry (DPV), enhancement fluorescence, UV-Vis, FT-IR spectroscopy and molecular docking. The molecular docking study shows that the GA interacts to DNA on partial intercalation mode via DNA groove binding and forms a complex by van der Waals and electroastatic interactions. In addition, the thermodynamic parameters of GA-DNA complex were investigated with ΔH°, ΔS° and ΔG° values of 15.81KJmol(-1), 133.95Jmol(-1) and -23.10KJmol(-1), respectively. All data revealed that the GA is binding to DNA by van der Waals and electrostatic interactions through the partial intercalations from the DNA's grooves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app