Add like
Add dislike
Add to saved papers

Crude extract of cyanobacteria (Radiocystis fernandoi, strain R28) induces liver impairments in fish.

Aquatic Toxicology 2017 January
Radiocystis fernandoi R28 strain is a cyanobacterium which produces mostly the RR and YR microcystin variants (MC-RR and MC-YR, respectively). The effects of crude extract of the R. fernandoi strain R28 were evaluated on the protein phosphatases and on the structure and ultrastructure of the liver of the Neotropical fish, Hoplias malabaricus, after acute and subchronic exposure. Concomitantly, the accumulation of the majority of MCs was determined in the liver and muscle. The fish were exposed to 120.60 MC-RR+MC-LR kg-fish(-1) (=100μg MC-LReq kg-fish(-1)) for 12 and 96h (one single dose, acute exposure) and 30days (one similar dose every 72h, subchronic exposure). MCs did not accumulate in the muscle but, in the liver, MC-YR accumulated after acute exposure and MC-RR and MC-YR accumulation occurred after subchronic exposure. Protein phosphatase 2A (PP2A) activity was inhibited only after subchronic exposure. Acute exposure induced liver hyperemia, hemorrhage, changes in hepatocytes and cord-like disorganization. At the ultrastructural level, the decreasing of glycogen and lipid levels, the swelling of mitochondria and whirling of endoplasmic reticulum suggested hepatocyte necrosis. Subchronic exposure resulted in a complete disarrangement of cord-like hepatocytes, some recovery of mitochondria and whirling endoplasmic reticulum and extensive connective tissues containing fibrous materials in the liver parenchyma. Despite microcystin toxicity and liver alterations, no tumor was induced by MCs. In conclusion, the increased algal mass of R. fernandoi in tropical freshwater, producing mainly MC-RR and MC-YR variants, results in fish liver impairments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app