Add like
Add dislike
Add to saved papers

Theory of Spin Loss at Metallic Interfaces.

Physical Review Letters 2016 November 12
Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic interfaces is usually quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model, while treating each interface as a fictitious bulk layer whose thickness is δ times the spin-diffusion length. By employing the properly generalized circuit theory and the scattering matrix approaches, we derive the relation of the parameter δ to the spin-flip transmission and reflection probabilities at an individual interface. It is found that δ is proportional to the square root of the probability of spin-flip scattering. We calculate the spin-flip scattering probabilities for flat and rough Cu/Pd interfaces using the Landauer-Büttiker method based on the first-principles electronic structure and find δ to be in reasonable agreement with experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app