Add like
Add dislike
Add to saved papers

Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation.

Sensors 2016 November 24
Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers' smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app