Add like
Add dislike
Add to saved papers

Sequential Enzymatic Conversion of α-Angelica Lactone to γ-Valerolactone through Hydride-Independent C=C Bond Isomerization.

ChemSusChem 2016 December 21
A case of hydride-independent reaction catalyzed by flavin-dependent ene-reductases from the Old Yellow Enzyme (OYE) family was identified. α-Angelica lactone was isomerized to the conjugated β-isomer in a nicotinamide-free and hydride-independent process. The catalytic cycle of C=C bond isomerization appears to be flavin-independent and to rely solely on a deprotonation-reprotonation sequence through acid-base catalysis. Key residues in the enzyme active site were mutated and provided insight on important mechanistic features. The isomerization of α-angelica lactone by OYE2 in aqueous buffer furnished 6.3 mm β-isomer in 15 min at 30 °C. In presence of nicotinamide adenine dinucleotide (NADH), the latter could be further reduced to γ-valerolactone. This enzymatic tool was successfully applied on semi-preparative scale and constitutes a sustainable process for the valorization of platform chemicals from renewable resources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app