Add like
Add dislike
Add to saved papers

NADPH oxidase-dependent degradation of single-walled carbon nanotubes in macrophages.

Previous studies have shown that carboxylated single-walled carbon nanotubes (SWCNTs) could be oxidatively biodegraded by neutrophil myeloperoxidase (MPO) and peroxynitrite (ONOO(-)). However, the biodegradation mechanism of nanotubes in macrophages has not been explored enough. Here, we showed that both MPO and ONOO(-) could effectively oxidize SWCNTs to generate shorter and oxidative nanotubes in vitro. SWCNTs were significantly degraded in zymosan-stimulated macrophages, and the degradation mechanism was dependent on MPO and ONOO(-)-driven oxidative pathways of activated macrophages, where NADPH oxidase was found to be a major determinant of the biodegradation process. Moreover, the functionalization of IgG to SWCNTs could stimulate MPO release and ONOO(-) formation in macrophages, thereby creating the conditions favorable for degradation of nanotubes and subsequently contributing to the higher degradation degree of IgG-coated SWCNTs. Therefore, our discovery of NADPH oxidase-dependent SWCNTs degradation in activated macrophages will open new opportunities for the regulation of SWCNTs fate in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app