Add like
Add dislike
Add to saved papers

Carrier particle design for stabilization and isolation of drug nanoparticles.

Nanoparticles of poorly water-soluble drugs were prepared in suspension via antisolvent precipitation in order to improve their dissolution behaviour. Insoluble, surface-functionalized, micron-range, clay carrier particles were employed for the dual purpose of stabilizing the nanoparticles in suspended state, and facilitating their unhindered isolation to solid state; often a challenging step in nanoparticle production. The carrier particles, which were functionalized with an optimal level of cationic polymer (protamine), attracted negatively-charged nanoparticles to their surface as a uniform and segregated nanoparticle layer, at drug loadings up to 9% w/w. By using carrier particles to stabilise the nanoparticles on their surface, the traditionally used solubilised nanosuspension stabilisers could be eliminated, thus avoiding time-consuming stabiliser screening tests. The carrier particle system facilitated stabilisation of nanoparticles in suspension, isolation of nanoparticles to the solid state via filtration, and preservation of fast nanoparticle-induced dissolution rates of the dried nanoparticle-carrier composites, indicating preservation of their high surface area during drying. The process was validated with two poorly water-soluble BCS Class II drugs, fenofibrate and mefenamic acid, both of which demonstrated negative surface charge in aqueous suspension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app