JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

17-oxo-DHA displays additive anti-inflammatory effects with fluticasone propionate and inhibits the NLRP3 inflammasome.

Scientific Reports 2016 November 25
Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function associated with increased local and systemic inflammatory markers, such as TNFα and IL-1β. Glucocorticoids are used to treat this chronic disease, however their efficacy is low and new drugs are very much required. 17-oxo-DHA is a cyclooxygenase-2-dependent, electrophilic, α,β-unsaturated keto-derivative of docosahexaenoic acid with anti-inflammatory properties. We evaluated the action of 17-oxo-DHA alone or in combination with the steroid fluticasone propionate (FP) in peripheral blood mononuclear cells (PBMCs) from COPD patients and healthy individuals exposed to lipopolysaccharide. We show that PBMCs from COPD patients released higher levels of TNFα and IL-1β compared to controls. 17-oxo-DHA displayed strong anti-inflammatory effects. The addition of 17-oxo-DHA in combination with FP showed enhanced anti-inflammatory effects through the modulation of transcriptional and post-transcriptional mechanisms. 17-oxo-DHA, but not FP, was able to suppress the release of mature IL-1β through inhibition of the NLRP3 inflammasome. Furthermore, 17-oxo-DHA inhibited inflammasome-dependent degradation of the glucocorticoid receptor (GR). Our findings suggest that 17-oxo-DHA in combination with FP or other steroids might achieve higher therapeutic efficacy than steroids alone. Combined treatment might be particularly relevant in those conditions where increased inflammasome activation may lead to GR degradation and steroid-unresponsive inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app