Add like
Add dislike
Add to saved papers

The Evaluation and Comparison of Transcriptionally Targeted Noxa and Puma Killer Genes to Initiate Apoptosis Under Cancer-Specific Promoter CXCR1 in Hepatocarcinoma Gene Therapy.

Hepatitis Monthly 2016 October
BACKGROUND: Cancerous cells proliferate as fast as possible without a proper surveillance system. This rapid cell division leads to enormous mutation rates, which help a tumor establish.

OBJECTIVES: This study evaluated the potential of inducing apoptosis using Noxa and Puma in a hepatocarcinoma cell line.

METHODS: The current study generated two recombinant lentiviruses, pLEX-GCN and pLEX-GCP, bearing Noxa and Puma, respectively. Transduction of both genes to hepatocarcinoma (HepG2) was verified using fluorescent microscopic analysis, western blotting, and quantitative real-time polymerase chain reaction (PCR). To evaluate the potential of Noxa and Puma to initiate apoptosis, a caspase-9 real-time, MTT assay, and a 4', 6-diamidino-2-phenylindole (DAPI) reagent were performed to stain apoptotic cells.

RESULTS: The data verified successful transduction to HepG2 and HEK293T. Higher relative expression of Noxa and Puma rather than the untransduced cell line showed these genes are expressed more in HepG2 in comparison to HEK293T. The results of the real-time PCR, MTT assay, and DAPI reagent illustrated that higher cells initiated apoptosis following Puma transduction rather than Noxa.

CONCLUSIONS: In this approach, the suicide gene was transferred to transformed cells and ignited apoptosis to exterminate them. Puma is a more potent killer gene and has higher capabilities to start intrinsic apoptosis pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app