JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Potential antidepressant and resilience mechanism revealed by metabolomic study on peripheral blood mononuclear cells of stress resilient rats.

Resilience is an active coping response to stress, which plays a very important role in major depressive disorder study. The molecular mechanisms underlying such resilience are poorly understood. Peripheral blood mononuclear cells (PBMCs) were promising objects in unveiling the underlying pathogenesis of resilience. Hereby we carried out successive study on PBMCs metabolomics in resilient rats of chronic unpredictable mild stress (CUMS) model. A gas chromatography-mass spectrometry (GC-MS) metabolomic approach coupled with principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to detect differential metabolites in PBMCs of resilient rats. Ingenuity Pathways Analysis (IPA) was applied for pathway analysis. A set of differential metabolites including Malic acid, Ornithine, l-Lysine, Stigmasterol, Oleic acid, γ-Tocopherol, Adenosine and N-acetyl-d-glucosamine were significantly altered in resilient rats, meanwhile promoting antidepressant research. As revealed by IPA that aberrant energy metabolism, HIFα signaling, neurotransmitter, O-GlcNAcylation and cAMP signaling cascade in peripheral might be evolved in the pathogenesis of coping mechanism. The GC-MS based metabolomics may contribute to better understanding of resilience, as well as shedding light on antidepressant discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app