Add like
Add dislike
Add to saved papers

TGF-β1 stimulates movement of renal proximal tubular epithelial cells in a three-dimensional cell culture via an autocrine TGF-β2 production.

TGF-βs are multifunctional cytokines, but their roles in human renal homeostasis are not fully understood. This study investigated the role of TGF-β1 in the movement of human renal proximal tubular epithelial cells (PTECs) in a three-dimensional (3D) model. HKC-8 cells, a human PTEC line, were grown in a 3D collagen culture system. Cell movement was observed under a microscope. The gene expression was examined using PCR Arrays or qRT-PCR, and protein levels by Western blot. Here, we showed that the tight junction structure formed between adjacent cells of a HKC-8 cell colony in 3D cultures, and TGF-β1 stimulated their movement, evidenced by the appearance of fingerlike pseudopodia in the leader cells at the edge of the colonies. The cell movement of these human PTECs was correlated with up-regulation of both MMP2 and MMP9 and down-regulation or inactivation of PLAUR and PTK2B. Analysis of TGF-β signaling targets confirmed autocrine production of TGF-β2 and its cleaving enzyme furin as well as SNAI1 by TGF-β1stimulation. Knockdown of TGF-β2 expression disrupted TGF-β1-stimulated PTEC invasiveness, which was correlated with the down-regulation of MMP2 and MMP9. In conclusion, the activation of TGF-β receptor autocrine signaling by up-regulated TGF-β2 may play a pivotal role in TGF-β1-induced human PTEC movement, which could be mediated at least by both MMP2 and MMP9.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app