Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Insect cold hardiness: the role of mitogen-activated protein kinase and Akt signalling in freeze avoiding larvae of the goldenrod gall moth, Epiblema scudderiana.

Larvae of the goldenrod gall moth, Epiblema scudderiana, use the freeze avoidance strategy of cold hardiness to survive the winter. Here we report that protein kinase-dependent signal transduction featuring mitogen-activated protein kinase (MAPK) signalling cascades (extracellular signal regulated kinase, c-jun N-terminal kinase and p38 MAPK pathways) and the Akt (also known as protein kinase B, or PKB) pathway could be integral parts of the development of cold hardiness by E. scudderiana. We used Luminex technology to assess the protein levels and phosphorylation status of key components and downstream targets of those pathways in larvae in response to low temperature acclimation. The data showed that MAPK pathways (both total protein and phosphorylated MAPK targets) were inhibited after 5°C acclimation, but not -15°C exposure, as compared with the 15°C control group. However, total heat shock protein 27 (HSP27) levels increased dramatically by ∼12-fold in the -15°C acclimated insects. Elevated HSP27 may facilitate anti-apoptotic mechanisms in an Akt-dependent fashion. By contrast, both 5 and -15°C acclimation produced signs of Akt pathway activation. In particular, the inhibitor phosphorylated Glycogen Synthase Kinase 3a (p-GSK3) levels remained high in cold-exposed larvae. Additionally, activation of the Akt pathway might also facilitate inhibition of apoptosis independently of GSK3. Overall, the current study indicates that both MAPK and Akt signal transduction may play essential roles in freeze avoidance by E. scudderiana.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app