Add like
Add dislike
Add to saved papers

Abnormality in hippocampal signal intensity predicts atrophy in patients with systemic lupus erythematosus.

Lupus 2017 May
Objectives To quantify signal abnormalities in the hippocampus (Hsig) of patients with systemic lupus erythematosus (SLE) and to determine if Hsig predict hippocampal atrophy (HA) in SLE. Methods We included all SLE patients and healthy age- and sex-matched individuals with two magnetic resonance imaging (MRI) scans performed with a minimum of 1 year interval. All individuals underwent a standardized neuropsychological evaluation. Individual results were converted into standard scores and compared to normative data. SLE patients were additionally assessed for disease activity (SLE Disease Activity Index (SLEDAI)), damage (Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI)), and the presence of antiphospholipid antibodies. MRI was performed on an Elscint 2 T scanner and T1 inversion recovery and T2 coronal images were used for analysis. Volumetric (HV) and signal quantification (Hsig) were determined by standardized protocols. Results We included 54 SLE patients (48 women; mean age 32.2 ± 10.56 years). Hsig were found at study entry in 15 (45.5%) patients. Hsig in the body and tail of non-atrophic hippocampi correlated with progression of volume loss during the follow-up period ( r = 0.8, p < 0.001). The presence of Hsig in the head of atrophic hippocampi correlated with progression of HA ( r = 0.73, p = 0.005) during the same period. No correlation of Hsig and disease activity or prednisone dose was observed. Conclusion HA is frequently observed in SLE patients and volume loss is progressive in a subgroup of patients. The evaluation of Hsig is an easy tool to determine patients that may have progressive hippocampal volume loss and should be followed more closely with MRI and cognitive evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app