JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In Vitro Drug and Gene Delivery Using Random Cationic Copolymers Forming Stable and pH-Sensitive Polymersomes.

Stimuli-sensitive polymeric vesicles or polymersomes as self-assembled colloidal nanocarriers have received paramount importance for their integral role as delivery system for therapeutics and biotherapeutics. This work describes spontaneous polymersome formation at pH 7, as evidenced by surface tension, steady state fluorescence, dynamic light scattering, and microscopic studies, by three hydrophilic random cationic copolymers synthesized using N,N-(dimethylamino)ethyl methacrylate (DMAEM) and methoxy poly(ethylene glycol) monomethacrylate in different mole ratios. The results suggest that methoxy poly(ethylene glycol) chains constitute the bilayer membrane of the polymersomes and DMAEM projects toward water constituting the positively charged surface. The polymersomes have been observed to release their encapsulated guest at acidic pH as a result of transformation into polymeric micelles. All these highly biocompatible cationic polymers show successful gene transfection ability as nonviral vector on human cell line with different potential. Thus these polymers prove their utility as a potential delivery system for hydrophilic model drug as well as genetic material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app