Add like
Add dislike
Add to saved papers

Structural Tuning of Anion-Templated Motifs with External Stimuli through Crystal-to-Crystal Transformation.

Protonation of trans-1,2-bis(4-pyridyl)ethylene (4,4'-bpe) with dilute sulfuric acid (33 %) afforded a protonated adduct [{4,4'-bpe⋅2 H+ }2 {HSO4 }-2 {SO4 }-2 {H2 O}2 ] (1). The neighboring olefinic bond in 1 is in a suitable range (3.931-4.064 Å) to undergo a photochemical [2+2] cycloaddition reaction. Upon irradiation with UV light (365 nm), 1 undergoes a molecular sliding involving the 4,4'-bpe⋅2 H+ units, affording 2, stabilized through OSO4 ⋅⋅⋅π interactions. Heating 1 to 50° C leads to a 3D hydrogen-bonded organic framework (HOF) (3). This process occurs through thermal dissociation of the bisulfate anion. Diffusion of iodine through the crystal lattice of 1 and 3 enables the reduction of sulfate to bisulfate, affording a 1D hydrogen-bonded chain (4). Solid-state13 C CPMAS NMR, IR, DSC, and powder XRD studies further support stimuli-responsive structural tuning through crystal-to-crystal transformation. All these conversions occur with significant translational and rotational movements along with a series of bond-breaking and bond-forming processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app