Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Relationship between the plasma levels of neurodegenerative proteins and motor subtypes of Parkinson's disease.

The aim of our study is to examine the plasma levels of the four kinds of neurodegenerative proteins in plasma: α-syn, T-tau, P-tau181, and Aβ-42 in Parkinson's disease (PD) and to evaluate the relationship between their plasma levels and PD motor subtypes. 84 patients with PD were enrolled in our study, and finally, 73 of them were classified into the tremor-dominant subtype (TD) and the postural instability gait difficulty subtype (PIGD). Their motor performance was evaluated by a series of clinical assessments: Freezing of Gait Questionnaire (FOGQ), Timed Up and Go (TUGs), Tinetti balance, and Tinetti gait. Plasma levels of these proteins were measured by enzyme-linked immunosorbent assay (ELISA). The plasma level of α-syn was significantly higher in PD patients when compared to controls (p = 0.004), and significantly higher in the PIGD group when compared to the TD group (p = 0.03). While the plasma level of Aβ-42 was significantly lower in PD patients than in controls (p = 0.002), and significantly lower in the PIGD group than in the TD group (p = 0.05). In PD patients, the plasma level of α-syn (r = -0.355, p < 0.001) was significantly related to the severity of Tenitti Gait score, even after performing multiple linear regression (p = 0.002). While the plasma level of Aβ-42 (r = -0.261, p < 0.05) was significantly associated with the severity of PIGD score and remained correlate when performed multiple linear regression (p = 0.005). The patients with PIGD subtype are characterized with a lower level of plasma Aβ-42 and a higher plasma level of α-syn, which may be used as biomarkers for diagnosis and progression of the subtypes of PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app