Add like
Add dislike
Add to saved papers

Liraglutide Enhances the Efficacy of Human Mesenchymal Stem Cells in Preserving Islet β-cell Function in Severe Non-obese Diabetic Mice.

Molecular Medicine 2016 November 18
Glucagon-like peptide 1 (GLP-1) can promote islet β-cell replication and function, and mesenchymal stem cells (MSCs) can inhibit T cell autoimmunity. This study aimed at testing the dynamic distribution of infused human MSCs and therapeutic effect of combined MSCs and Liraglutide, a long-acting GLP-1 analogue, on preserving β-cell function in severe non-obese diabetic (NOD) mice. We found that infused MSCs accumulated in the pancreas at 4 weeks post infusion, which was not affected by Liraglutide treatment. Liraglutide significantly enhanced the function of MSCs to preserve islet β-cells by reducing glucose level at 30 minutes post glucose challenge and increasing the contents and secretion of insulin by islet β-cells in severe diabetic NOD mice. Infusion with MSCs significantly reduced insulitis scores, but increased the frequency of splenic Tregs, accompanied by reducing the levels of plasma IFN-γ and TNF-α and elevating the levels of plasma IL-10 and transforming growth factor-β1 (TGF-β1) in NOD mice. Although Liraglutide mitigated MSC-mediated changes in the frequency of Tregs and the levels of plasma IL-10, Liraglutide significantly increased the levels of plasma TGF-β1 in severe diabetic NOD mice. Therefore, our findings suggest that Liraglutide may enhance the therapeutic efficacy of MSCs in treatment of severe type 1 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app