Add like
Add dislike
Add to saved papers

Mechanism of excited state deactivation of indan-1-ylidene and fluoren-9-ylidene malononitriles.

Herein, we report complementary computational and experimental evidence supporting the existence, for indan-1-ylidene malononitrile and fluoren-9-ylidene malononitrile, of a non-radiative decay channel involving double bond isomerisation motion. The results of UV-Vis transient absorption spectroscopy highlight that the decay takes place within hundreds of picoseconds. In order to understand the related molecular mechanism, photochemical reaction paths were computed by employing multiconfigurational quantum chemistry. The results indicate that the excited state deactivation occurs via concerted double bond twisting of the dicyanovinyl (DCV) unit coupled with a pyramidalisation of its substituted carbon. It is also shown that the observed differences in the excited state lifetimes when passing from indan-1-ylidene malononitrile to fluoren-9-ylidene are associated with the change in the topography of the conical intersection driving the decay from intermediate to sloped, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app