Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparison of the Stereotactic Accuracies of Function-Guided Deep Brain Stimulation, Calculated Using Multitrack Target Locations Geometrically Inferred from Three-Dimensional Trajectory Rotations, and of Magnetic Resonance Imaging-Guided Deep Brain Stimulation and Outcomes.

World Neurosurgery 2017 Februrary
OBJECTIVE: In previous studies, multitrack trajectories in deep brain stimulation (DBS) have usually been approximated. Using a geometrically more accurate method, we compared the stereotactic accuracy of DBS with multitrack microelectrode recording and awake stimulation (function group) and MRI-guided DBS (MRI group).

METHODS: One hundred and seventy-two leads used in DBS between April 2014 and January 2016 were evaluated for stereotactic errors. Targets were the subthalamic nucleus (STN, 139 leads) or globus pallidus interna (GPi, 33 leads). We geometrically calculated shifted-track targets by considering the three-dimensional stereotactic ring and arc rotations. Stereotactic errors were calculated using Euclidean distances perpendicular to trajectories. Motor outcomes according to the Unified Parkinson's Disease Rating Scale (UPDRS) part III, improvement percentages by stimulations, were analyzed in 24 patients with 1 year follow-ups.

RESULTS: Functional evaluation tended to increase stereotactic errors in the STN function group (n = 129; 1.4 ± 0.7 mm) more than in the STN MRI group (n = 10; 1.0 ± 0.6 mm; P = 0.06). Leads with higher stereotactic errors (n = 65; 1.6 ± 0.7 mm; P < 0.001) than the center-track leads (n = 64; 1.2 ± 0.7 mm) were selectively track shifted. Track-shifted leads approached MRI targets in 86% (56/65 leads). Lower stereotactic errors tended to correlate with a better outcome (P = 0.095). Distances to MRI targets >2.5 mm tended to relate to a worse outcome (P = 0.087). Stereotactic errors were lower (n = 33; 0.9 ± 0.5 mm) in the GPi MRI group.

CONCLUSIONS: Multitrack DBS using intraoperative functional evaluation resulted in worse stereotactic accuracy than did MRI-guided DBS. However, track shifts in function-guided DBS can approach MRI targets effectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app