Add like
Add dislike
Add to saved papers

Rapid visualization of nonmelanoma skin cancer.

BACKGROUND: Mohs micrographic surgery examines all margins of the resected sample and has a 99% cure rate. However, many nonmelanoma skin cancers (NMSCs) are not readily amenable to Mohs micrographic surgery. This defines an unmet clinical need to assess the completeness of non-Mohs micrographic surgery resections during surgery to prevent re-excision/recurrence.

OBJECTIVE: We sought to examine the utility of quenched activity-based probe imaging to discriminate cancerous versus normal-appearing skin tissue.

METHODS: The quenched activity-based probe GB119 was applied to NMSC excised from 68 patients. We validated activation of the probe for hematoxylin-eosin-confirmed cancerous tissue versus normal-appearing skin tissue.

RESULTS: Topical application of the probe differentiated basal cell carcinoma and squamous cell carcinoma from normal-appearing skin with overall estimated sensitivity and specificity of 0.989 (95% confidence interval 0.940-1.00) and 0.894 (95% confidence interval 0.769-0.965), respectively. Probe activation accurately defined peripheral margins of NMSC as compared with conventional hematoxylin-eosin-based pathology.

LIMITATIONS: This study only examined NMSC debulking excision specimens. The sensitivity and specificity for this approach using final NMSC excision margins will be clinically important.

CONCLUSIONS: These findings merit further studies to determine whether quenched activity-based probe technology may enable cost-effective increased cure rates for patients with NMSC by reducing re-excision and recurrence rates with a rapid and easily interpretable technological advance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app