Add like
Add dislike
Add to saved papers

Automated tracking of colloidal clusters with sub-pixel accuracy and precision.

Quantitative tracking of features from video images is a basic technique employed in many areas of science. Here, we present a method for the tracking of features that partially overlap, in order to be able to track so-called colloidal molecules. Our approach implements two improvements into existing particle tracking algorithms. Firstly, we use the history of previously identified feature locations to successfully find their positions in consecutive frames. Secondly, we present a framework for non-linear least-squares fitting to summed radial model functions and analyze the accuracy (bias) and precision (random error) of the method on artificial data. We find that our tracking algorithm correctly identifies overlapping features with an accuracy below 0.2% of the feature radius and a precision of 0.1 to 0.01 pixels for a typical image of a colloidal cluster. Finally, we use our method to extract the three-dimensional diffusion tensor from the Brownian motion of colloidal dimers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app